Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Dynamically parameterized architectures for power-aware video coding: motion estimation and DCT

Authors: Wayne P. Burleson; Prashant Jain; Subramanian Venkatraman;

Dynamically parameterized architectures for power-aware video coding: motion estimation and DCT

Abstract

Power-aware video coding requires a combination of high-performance and flexibility to satisfy perceptual quality requirements and meet low-power constraints. This work explores the use of dynamically configurable algorithms and architectures which leverage two fundamental properties of video processing: 1. Video content and its associated processing are highly non-uniform in both space and time. 2. Video processing can gracefully degrade in power constrained environments by exploiting perceptual tolerance. MPEG-4 has opened numerous new opportunities in both of these areas due to object-based coding techniques and algorithm feasibility. Although portable video products supporting the MPEG-4 simple profile are now available, much work remains to be done to achieve higher quality formats in a low-power environment. Much recent work has focused on low-power devices, circuits, and CAD tools, to support both general-purpose processing and more specialized processing, however it has been generally recognized that the largest gains in power efficiency come from very high-level changes to algorithms and processing systems. This work focuses on novel dynamically parameterized architectures for motion estimation (ME) and discrete cosine transform (DCT), the two most computationally intensive aspects of video coding.

Country
United States
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!