<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We propose a new approach for universal lossless text compression, based on grammar compression. In the literature, a target string $T$ has been compressed as a context-free grammar $G$ in Chomsky normal form satisfying $L(G) = \{T\}$. Such a grammar is often called a \emph{straight-line program} (SLP). In this paper, we consider a probabilistic grammar $G$ that generates $T$, but not necessarily as a unique element of $L(G)$. In order to recover the original text $T$ unambiguously, we keep both the grammar $G$ and the derivation tree of $T$ from the start symbol in $G$, in compressed form. We show some simple evidence that our proposal is indeed more efficient than SLPs for certain texts, both from theoretical and practical points of view.
11 pages, 3 figures, accepted for poster presentation at DCC 2020
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |