Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Vector quantizer design using genetic algorithms

Authors: Sunghyun Choi 0001; Wee Keong Ng;

Vector quantizer design using genetic algorithms

Abstract

The design of vector quantizers (VQs) that yield minimal distortion is one of the most challenging problems in source coding. The problem of VQ design is to find a codebook that gives the least overall distortion (or equivalently, the largest signal-to-noise ratio (SNR)) for a given set of input vectors. This problem is known to be difficult as there are no known closed-form solutions. The generalized Lloyd algorithm (GLA) uses a finite set of training sequences as the data source and employs an iterative refinement. Given an initial codebook, the algorithm computes the nearest focally optimum codebook only. Genetic algorithms (GAs) are emerging as widely accepted optimization and search methods. These search methods are rooted in the mechanisms of evolution and natural genetics. They have a high probability of locating the globally optimal solution in a multimodal search space. A genetic algorithmic (GA) approach to vector quantizer design that combines the GLA is presented. We refer to this hybrid as the genetic generalized Lloyd algorithm (GGLA). It works briefly as follows. Initially, a finite number of codebooks, called chromosomes, are selected. In contrast to the GLA which refines only one codebook at a time, those codebooks undergo iterative cycles of reproduction in parallel. During an iteration, each codebook is updated by GLA or GA operations (i.e., mutation, crossover, and chromosome replacement). Three versions of the GGLAs are investigated depending on how the GLA or GA is selected.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!