Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cache Simulation for Instruction Set Simulator QEMU

Authors: Tran Van Dung; Ittetsu Taniguchi; Hiroyuki Tomiyama;

Cache Simulation for Instruction Set Simulator QEMU

Abstract

In embedded system design, there is an increasing demand for modeling techniques that can provide both accurate measurements of delay and fast simulation speed. Modeling latency effects of a cache can greatly increase accuracy of the simulation and assist developers to optimize their software. Current solutions have not succeeded in balancing three important factors: speed, accuracy and usability. In this research, we created a cache simulation module inside a well-known instruction set simulator QEMU. Our implementation can simulate various cases of cache configuration and obtain every memory access. In full system simulation, speed is kept at around 73 MIPS on a personal host computer which is close to native execution of ARM Cortex-M3(125 MIPS at 100 MHz). Compared to the widely used cache simulation tool, Valgrind, our simulator is three time faster.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!