
This paper introduces our submission to the 2nd Facial Landmark Localisation Competition. We present a deep architecture to directly detect facial landmarks without using face detection as an initialization. The architecture consists of two stages, a Basic Landmark Prediction Stage and a Whole Landmark Regression Stage. At the former stage, given an input image, the basic landmarks of all faces are detected by a sub-network of landmark heatmap and affinity field prediction. At the latter stage, the coarse canonical face and the pose can be generated by a Pose Splitting Layer based on the visible basic landmarks. According to its pose, each canonical state is distributed to the corresponding branch of the shape regression sub-networks for the whole landmark detection. Experimental results show that our method obtains promising results on the 300-W dataset, and achieves superior performances over the baselines of the semi-frontal and the profile categories in this competition.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
