
arXiv: 2305.15688
Most existing RGB-based trackers target low frame rate benchmarks of around 30 frames per second. This setting restricts the tracker's functionality in the real world, especially for fast motion. Event-based cameras as bioinspired sensors provide considerable potential for high frame rate tracking due to their high temporal resolution. However, event-based cameras cannot offer fine-grained texture information like conventional cameras. This unique complementarity motivates us to combine conventional frames and events for high frame rate object tracking under various challenging conditions. Inthispaper, we propose an end-to-end network consisting of multi-modality alignment and fusion modules to effectively combine meaningful information from both modalities at different measurement rates. The alignment module is responsible for cross-style and cross-frame-rate alignment between frame and event modalities under the guidance of the moving cues furnished by events. While the fusion module is accountable for emphasizing valuable features and suppressing noise information by the mutual complement between the two modalities. Extensive experiments show that the proposed approach outperforms state-of-the-art trackers by a significant margin in high frame rate tracking. With the FE240hz dataset, our approach achieves high frame rate tracking up to 240Hz.
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
