
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Most prior work represents the shapes of point clouds by coordinates. However, it is insufficient to describe the local geometry directly. In this paper, we present \textbf{RepSurf} (representative surfaces), a novel representation of point clouds to \textbf{explicitly} depict the very local structure. We explore two variants of RepSurf, Triangular RepSurf and Umbrella RepSurf inspired by triangle meshes and umbrella curvature in computer graphics. We compute the representations of RepSurf by predefined geometric priors after surface reconstruction. RepSurf can be a plug-and-play module for most point cloud models thanks to its free collaboration with irregular points. Based on a simple baseline of PointNet++ (SSG version), Umbrella RepSurf surpasses the previous state-of-the-art by a large margin for classification, segmentation and detection on various benchmarks in terms of performance and efficiency. With an increase of around \textbf{0.008M} number of parameters, \textbf{0.04G} FLOPs, and \textbf{1.12ms} inference time, our method achieves \textbf{94.7\%} (+0.5\%) on ModelNet40, and \textbf{84.6\%} (+1.8\%) on ScanObjectNN for classification, while \textbf{74.3\%} (+0.8\%) mIoU on S3DIS 6-fold, and \textbf{70.0\%} (+1.6\%) mIoU on ScanNet for segmentation. For detection, previous state-of-the-art detector with our RepSurf obtains \textbf{71.2\%} (+2.1\%) mAP$\mathit{_{25}}$, \textbf{54.8\%} (+2.0\%) mAP$\mathit{_{50}}$ on ScanNetV2, and \textbf{64.9\%} (+1.9\%) mAP$\mathit{_{25}}$, \textbf{47.7\%} (+2.5\%) mAP$\mathit{_{50}}$ on SUN RGB-D. Our lightweight Triangular RepSurf performs its excellence on these benchmarks as well. The code is publicly available at \url{https://github.com/hancyran/RepSurf}.
CVPR 2022 Oral. Code available at https://github.com/hancyran/RepSurf
FOS: Computer and information sciences, Computer Science - Robotics, Computer Science - Graphics, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics (cs.RO), Graphics (cs.GR)
FOS: Computer and information sciences, Computer Science - Robotics, Computer Science - Graphics, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics (cs.RO), Graphics (cs.GR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 113 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
