
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11779/407
Person re-identification is a challenging task mainly due to factors such as background clutter, pose, illumination and camera point of view variations. These elements hinder the process of extracting robust and discriminative representations, hence preventing different identities from being successfully distinguished. To improve the representation learning, usually, local features from human body parts are extracted. However, the common practice for such a process has been based on bounding box part detection. In this paper, we propose to adopt human semantic parsing which, due to its pixel-level accuracy and capability of modeling arbitrary contours, is naturally a better alternative. Our proposed SPReID integrates human semantic parsing in person re-identification and not only considerably outperforms its counter baseline, but achieves state-of-the-art performance. We also show that by employing a \textit{simple} yet effective training strategy, standard popular deep convolutional architectures such as Inception-V3 and ResNet-152, with no modification, while operating solely on full image, can dramatically outperform current state-of-the-art. Our proposed methods improve state-of-the-art person re-identification on: Market-1501 by ~17% in mAP and ~6% in rank-1, CUHK03 by ~4% in rank-1 and DukeMTMC-reID by ~24% in mAP and ~10% in rank-1.
FOS: Computer and information sciences, Person re-identification, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computer vision
FOS: Computer and information sciences, Person re-identification, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computer vision
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 449 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
views | 3 |