
arXiv: 1706.08482
Data association problems are an important component of many computer vision applications, with multi-object tracking being one of the most prominent examples. A typical approach to data association involves finding a graph matching or network flow that minimizes a sum of pairwise association costs, which are often either hand-crafted or learned as linear functions of fixed features. In this work, we demonstrate that it is possible to learn features for network-flow-based data association via backpropagation, by expressing the optimum of a smoothed network flow problem as a differentiable function of the pairwise association costs. We apply this approach to multi-object tracking with a network flow formulation. Our experiments demonstrate that we are able to successfully learn all cost functions for the association problem in an end-to-end fashion, which outperform hand-crafted costs in all settings. The integration and combination of various sources of inputs becomes easy and the cost functions can be learned entirely from data, alleviating tedious hand-designing of costs.
Accepted to CVPR 2017
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 149 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
