
This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class variations, simultaneously, the proposed DDML trains a deep neural network which learns a set of hierarchical nonlinear transformations to project face pairs into the same feature subspace, under which the distance of each positive face pair is less than a smaller threshold and that of each negative pair is higher than a larger threshold, respectively, so that discriminative information can be exploited in the deep network. Our method achieves very competitive face verification performance on the widely used LFW and YouTube Faces (YTF) datasets.
:Engineering::Computer science and engineering::Computing methodologies::Pattern recognition [DRNTU]
:Engineering::Computer science and engineering::Computing methodologies::Pattern recognition [DRNTU]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 443 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
