
Nonnegative tensor factorization (NTF) is a recent multiway (multilinear) extension of nonnegative matrix factorization (NMF), where nonnegativity constraints are imposed on the CANDECOMP/PARAFAC model. In this paper we consider the Tucker model with nonnegativity constraints and develop a new tensor factorization method, referred to as nonnegative Tucker decomposition (NTD). The main contributions of this paper include: (1) multiplicative updating algorithms for NTD; (2) an initialization method for speeding up convergence; (3) a sparseness control method in tensor factorization. Through several computer vision examples, we show the useful behavior of the NTD, over existing NTF and NMF methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 122 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
