Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://repository.bi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/cvpr.2...
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Graph Based Approach for Naming Faces in News Photos

Authors: Ozkan, D.; Duygulu, P.;

A Graph Based Approach for Naming Faces in News Photos

Abstract

We propose a method to associate names and faces for querying people in large news photo collections. On the assumption that a person’s face is likely to appear when his/her name is mentioned in the caption, first all the faces associated with the query name are selected. Among these faces, there could be many faces corresponding to the queried person in different conditions, poses and times, but there could also be other faces corresponding to other people in the caption or some non-face images due to the errors in the face detection method used. However, in most cases, the number of corresponding faces of the queried person will be large, and these faces will be more similar to each other than to others. In this study, we propose a graph based method to find the most similar subset among the set of possible faces associated with the query name, where the most similar subset is likely to correspond to the faces of the queried person. When the similarity of faces are represented in a graph structure, the set of most similar faces will be the densest component in the graph. We represent the similarity of faces using SIFT descriptors. The matching interest points on two faces are decided after the application of two constraints, namely the geometrical constraint and the unique match constraint. The average distance of the matching points are used to construct the similarity graph. The most similar set of faces is then found based on a greedy densest component algorithm. The experiments are performed on thousands of news photographs taken in real life conditions and, therefore, having a large variety of poses, illuminations and expressions.

Related Organizations
Keywords

Graph theory, Image processing, Face detection method, Query languages, Graph structure, Geometry, Queried person, News photo collections, Face recognition, Algorithms, Constraint theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Green