
Computation is often thought of as a branch of discrete mathematics, using the Turing model. That model works well for conventional applications such as word processing, database transactions, and other discrete data processing applications. But much of the world’s computer power resides in embedded devices, sensing and controlling complex physical processes in the real world. Other computational models and paradigms might be better suited to such tasks. For example, a computer can be regarded as a form of open dynamical system. One particular approach taking this view is reservoir computing, which can be instantiated in a range of different material substrates. This approach can support smart processing ‘at the edge’, allow a close integration of sensing and computing in a single conceptual model and physical package, and provides a uniform approach to building hybrid architectures of heterogeneous devices.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
