Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Improved Denoising Auto-Encoders for Image Denoising

Authors: Qian Xiang; Xuliang Pang;

Improved Denoising Auto-Encoders for Image Denoising

Abstract

Image denoising is an important pre-processing step in image analysis. Various denoising algorithms, such as BM3D, PCD and K-SVD, obtain remarkable effects. Recently a deep denoising auto-encoder has been proposed and shown excellent performance compared to conventional image denoising algorithms. In this paper, we study the statistical features of restored image residuals produced by Denoising Auto-encoders and propose an improved training loss function for Denoising Auto-encoders based on Method noise and entropy maximization principle, with residual statistics as constraint conditions. We compare it with conventional denoising algorithms including original Denoising Auto-encoders, BM3D, total variation (TV) minimization, and non-local mean (NLM) algorithms. Experiments indicate that the Improved Denoising Auto-encoders introduce less non-existent artifacts and are more robustness than other state-of-the-art denoising methods in both PSNR and SSIM indexes, especially under low SNR.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!