<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Three-dimensional structure prediction has crucial importance for bioinformatics and theoretical chemistry. One of the main steps of three-dimensional structure prediction is dihedral (torsion) angle prediction. As new feature extraction methods are developed the dimension of the input space increases considerably yielding longer model training and less accurate models due to noisy or redundant features. In this study, feature selection is employed for dimensionality reduction on one of the established benchmarks of protein 1D structure prediction. Experimental results show that the feature selection improves the accuracy of protein dihedral angle class prediction by 2% and can eliminate up to %82 of the features when random forest classifier is used. Accurate prediction of dihedral angles will eventually contribute to protein structure prediction.
protein structure prediction, feature selection, backbone angle, random forest, dihedral angle prediction
protein structure prediction, feature selection, backbone angle, random forest, dihedral angle prediction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |