Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/cec.20...
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Return, Diversification and Risk in Cryptocurrency Portfolios using Deep Recurrent Neural Networks and Multi-Objective Evolutionary Algorithms

Authors: Estalayo, Ismael; Ser, Javier Del; Osaba, Eneko; Bilbao, Miren Nekane; Muhammad, Khan; Galvez, Akemi; Iglesias, Andres;

Return, Diversification and Risk in Cryptocurrency Portfolios using Deep Recurrent Neural Networks and Multi-Objective Evolutionary Algorithms

Abstract

Nowadays the widespread adoption of cryptocurrencies (also referred to as Altcoins) has universalized the access of the society to trading opportunities in alternative markets, thereby laying a rich substrate for the development of new applications and services aimed at easing the management of personal investment portfolios. When selecting how much to invest and in which asset it is often the case that multiple criteria conflict with each other within a single decision making process, which calls for efficient means to optimally balance such contradicting objectives. In this paper we report initial findings around the combination of Deep Learning (DL) models and Multi-Objective Evolutionary Algorithms (MOEAs) for allocating cryptocurrency portfolios. Technical rationale and details are given on the design of a stacked DL recurrent neural network, and how its predictive power can be exploited for yielding accurate ex ante estimates of the return and risk of the portfolio. These two objectives are complemented by a measure of the diversity of the investment. Results are presented and discussed with real cryptocurrency data, showcasing the potential of our technical approach to produce near-optimal portfolios by balancing the aforementioned objectives. Our study stimulates further research towards incorporating other factors in the design of predictive portfolios, such as the confidence of the DL model output.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!