Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Conference object . 2018
License: CC BY NC SA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BCAM's Institutional Repository Data
Conference object . 2018
License: CC BY NC SA
https://doi.org/10.1109/cec.20...
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Conference object . 2018
License: CC BY NC SA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Are the Artificially Generated Instances Uniform in Terms of Difficulty?

Authors: Pérez, A.; Ceberio, J.; Lozano, J.A.;

Are the Artificially Generated Instances Uniform in Terms of Difficulty?

Abstract

In the field of evolutionary computation, it is usual to generate artificial benchmarks of instances that are used as a test-bed to determine the performance of the algorithms at hand. In this context, a recent work on permutation problems analyzed the implications of generating instances uniformly at random (u.a.r.) when building those benchmarks. Particularly, the authors analyzed instances as rankings of the solutions of the search space sorted according to their objective function value. Thus, two instances are considered equivalent when their objective functions induce the same ranking over the search space. Based on the analysis, they suggested that, when some restrictions hold, the probability to create easy rankings is higher than creating difficult ones. In this paper, we continue on that research line by adopting the framework of local search algorithms with the best improvement criterion. Particularly, we empirically analyze, in terms of difficulty, the instances (rankings) created u.a.r. of three popular problems: Linear Ordering Problem, Quadratic Assignment Problem and Flowshop Scheduling Problem. As the neighborhood system is critical for the performance of local search algorithms three different neighborhood systems have been considered: swap, interchange and insert. Conducted experiments reveal that (1) by sampling the parameters uniformly at random we obtain instances with a non-uniform distribution in terms of difficulty, (2) the distribution of the difficulty strongly depends on the pair problem-neighborhood considered, and (3) given a problem, the distribution of the difficulty seems to depend on the smoothness of the landscape induced by the neighborhood and on its size.

Research Groups 2013-2018 (IT-609-13) TIN2016-78365-R(Spanish Ministry of Economy, Industry and Competitiveness)

Country
Spain
Keywords

Combinatorial optimization problems, difficulty, local search

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green