<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper we investigate the question of transfer learning in evolutionary optimization using estimation of distribution algorithms. We propose a framework for transfer learning between related optimization problems by means of structural transfer. Different methods for incrementing or replacing the (possibly unavailable) structural information of the target optimization problem are presented. As a test case we solve the multi-marker tagging single-nucleotide polymorphism (SNP) selection problem, a real world problem from genetics. The introduced variants of structural transfer are validated in the computation of tagging SNPs on a database of 1167 individuals from 58 human populations worldwide. Our experimental results show significant improvements over EDAs that do not incorporate information from related problems.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |