
A haplotype is a DNA sequence that is inherited from one parent. They are especially important in the study of complex diseases since they contain more information than genotype data, so the next high priority phase in human genomics involves the development of a full Haplotype Map of human genome [1]. However, obtaining haplotype data is technically difficult and expensive. One of the computational methods for obtaining haplotype data from genotype data is the pure parsimony criterion, an approach known as Haplotype Inference by Pure Parsimony (HIPP). It has been proved to be an NP-hard problem. We present a new preprocessing method which drastically decreases the number of relevant haplotypes. Several algorithms need to preprocess data; for big problem instances this key procedure is even more important than the process. This preprocessing was eventually tested on real and simulated data applying a tabu search, and the performance of the resulting algorithm showed it to be competitive with the best actual solvers.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
