
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Estimation of distribution algorithms (EDA) is an active area of research within the field of evolutionary algorithms. While EDAs have shown great promise on difficult problems with strong epistasis between genes, such as hierarchical and deceptive problems, they have not been a choice for non-stationary problems where the target solution changes over time. This work aims to explore the diversity within the population of an EDA using a supervised classifier. We introduce a technique, sampling-mutation, that can help increase the useful diversity within the population. We show that sampling-mutation increases the performance of an EDA on a non-stationary problem and a hierarchical problem.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
