
In this report, a method for approximating the stabilizing solution of the Hamilton-Jacobi equation for integrable systems is proposed using symplectic geometry and a Hamiltonian perturbation technique. Using the fact that the Hamiltonian lifted system of an integrable system is also integrable, the Hamiltonian system (canonical equation) that is derived from the theory of 1-st order partial differential equations is considered as an integrable Hamiltonian system with a perturbation caused by control. Assuming that the approximating Riccati equation from the Hamilton-Jacobi equation at the origin has a stabilizing solution, we construct approximating behaviors of the Hamiltonian flows on a stable Lagrangian submanifold, from which an approximation to the stabilizing solution is obtained.
IR-66916, METIS-237951, EWI-9202
IR-66916, METIS-237951, EWI-9202
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
