
The balanced truncation approach to model reduction is considered for linear discrete-time periodic systems with time-varying dimensions. Stability of the reduced model is proved and a guaranteed additive bound is derived for the approximation error. These results represent generalizations of the corresponding ones for standard discrete-time systems. Two numerically reliable methods to compute reduced order models using the balanced truncation approach are considered. The square-root method and the potentially more accurate balancing-free square-root method belong to the family of methods with guaranteed enhanced computational accuracy. The key numerical computation in both methods is the determination of the Cholesky factors of the periodic Grammian matrices by solving nonnegative periodic Lyapunov equations with time-varying dimensions directly for the Cholesky factors of the solutions.
Institut für Robotik und Mechatronik (bis 2012), numerical methods, model reduction, periodic systems
Institut für Robotik und Mechatronik (bis 2012), numerical methods, model reduction, periodic systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
