Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Eucalyptus Open-Source Cloud-Computing System

Authors: Daniel Nurmi; Rich Wolski; Chris Grzegorczyk; Graziano Obertelli; Sunil Soman; Lamia Youseff; Dmitrii Zagorodnov;

The Eucalyptus Open-Source Cloud-Computing System

Abstract

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary, rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this work, we present Eucalyptus -- an open-source software framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. We outline the basic principles of the Eucalyptus design, detail important operational aspects of the system, and discuss architectural trade-offs that we have made in order to allow Eucalyptus to be portable, modular and simple to use on infrastructure commonly found within academic settings. Finally, we provide evidence that Eucalyptus enables users familiar with existing Grid and HPC systems to explore new cloud computing functionality while maintaining access to existing, familiar application development software and Grid middle-ware.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    939
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.01%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.01%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
939
Top 1%
Top 0.01%
Top 0.01%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!