Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/ccc.20...
Article . 2014 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Composition Theorem for Parity Kill Number

Authors: Li-Yang Tan; John Wright; Yu Zhao; Xiaorui Sun; Ryan O'Donnell;

A Composition Theorem for Parity Kill Number

Abstract

In this work, we study the parity complexity measures ${\mathsf{C}^{\oplus}_{\min}}[f]$ and ${\mathsf{DT^{\oplus}}}[f]$. ${\mathsf{C}^{\oplus}_{\min}}[f]$ is the \emph{parity kill number} of $f$, the fewest number of parities on the input variables one has to fix in order to "kill" $f$, i.e. to make it constant. ${\mathsf{DT^{\oplus}}}[f]$ is the depth of the shortest \emph{parity decision tree} which computes $f$. These complexity measures have in recent years become increasingly important in the fields of communication complexity \cite{ZS09, MO09, ZS10, TWXZ13} and pseudorandomness \cite{BK12, Sha11, CT13}. Our main result is a composition theorem for ${\mathsf{C}^{\oplus}_{\min}}$. The $k$-th power of $f$, denoted $f^{\circ k}$, is the function which results from composing $f$ with itself $k$ times. We prove that if $f$ is not a parity function, then ${\mathsf{C}^{\oplus}_{\min}}[f^{\circ k}] \geq ��({\mathsf{C}_{\min}}[f]^{k}).$ In other words, the parity kill number of $f$ is essentially supermultiplicative in the \emph{normal} kill number of $f$ (also known as the minimum certificate complexity). As an application of our composition theorem, we show lower bounds on the parity complexity measures of $\mathsf{Sort}^{\circ k}$ and $\mathsf{HI}^{\circ k}$. Here $\mathsf{Sort}$ is the sort function due to Ambainis \cite{Amb06}, and $\mathsf{HI}$ is Kushilevitz's hemi-icosahedron function \cite{NW95}. In doing so, we disprove a conjecture of Montanaro and Osborne \cite{MO09} which had applications to communication complexity and computational learning theory. In addition, we give new lower bounds for conjectures of \cite{MO09,ZS10} and \cite{TWXZ13}.

Keywords

FOS: Computer and information sciences, Computer Science - Computational Complexity, Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Green