
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Heart assist devices provide mechanical circulatory support for patients with end-stage heart failure. Extracorporeal blood pumps are applied to adult and pediatric patients in the case of uni- and biventricular assistance. Modern driving units provide more mobility what is an immense benefit to the quality of life of the patients. The treated heart assist device in this article is the EXCOR system (Berlin Heart GmbH, Germany), which is a pneumatically driven extracorporeal assist device. It allows uni- and biventricular heart support. The automatic control system should match the pump output to the metabolic needs by controlling the piston movement and the enclosed air mass in the pneumatic system. This paper describes the design of a control system for the extracorporeal assist device. A developed model is used for controller synthesis. This model is based on modified basic physical equations and optimized for practical applications.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
