Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/case48...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Causal interaction modeling on ultra-processed food manufacturing

Authors: Menegozzo, G; Dall'Alba, D; Fiorini, P;

Causal interaction modeling on ultra-processed food manufacturing

Abstract

In recent years computer science theories have been applied to manufacturing improving products quality, fault detection and process monitoring. However, there is a lack of research in the identification of causal relationships among data. These associations of cause-effect are important since they allow root causes to be analysed, they highlight the most influential process variables and they embed a typical human reasoning model that is largely applied in manufacturing. Compared to knowledge-based approach, data driven causal discovery (DCD) enables causal modeling without overloading expert operators and scales faster. However, DCD is challenging to be applied especially in small-medium enterprises where machines raw data are stored without the support of specialized data analyst team. In this work, we aim to automatically reconstruct the causal interaction model of the production flow from raw data. We use PCMCI, a constraint-based causal discovery algorithm, that handles both linear and nonlinear relationships in time series. We validate our method on a synthetic realization that emulates manufacturing features and on real data with domain expert support. The obtained results confirm that PCMCI is able to recognize more than 50% of causal relationships without any false positives. The application of the PCMCI method in an ultra-processed food manufacturer allows to propose a novel causal interaction model integrating data-driven and expert’s knowledge.

Related Organizations
Keywords

Causal inference, Machine learning, process control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!