
Random linear network coding (RLNC) has gain popularity as a useful performance-enhancing tool for communications networks. In this paper, we propose a RLNC parallel implementation technique for General Purpose Graphical Processing Units (GPGPUs.) Recently, GPGPU technology has paved the way for parallelizing RLNC; however, current state-of-the-art parallelization techniques for RLNC are unable to fully utilize GPGPU technology in many occasions. Addressing this problem, we propose a new RLNC parallelization technique that can fully exploit GPGPU architectures. Our parallel method shows over 4 times higher throughput compared to existing state-of-the-art parallel RLNC decoding schemes for GPGPU and 20 times higher throughput over the state-of-the-art serial RLNC decoders.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
