
doi: 10.1109/bibm.2007.68
Statistical machine learning is a field that combines algorithmic ideas with foundational concepts from probability and statistics. This combination makes statistical machine learning an essential tool for computational biology, in part because probabilistic notions are inherent in biology (arising, e.g., via thermodynamics, recombination and germline mutation) and in part because of the incomplete nature of most biological data sets. I will present several examples of applications of statistical machine learning to problems in biology, in the areas of protein functional annotation, protein structural modeling, protein structure prediction and multipopulation linkage and association analysis.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
