Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Malicious Web Pages with Static Heuristics

Authors: Peter Komisarczuk; Ian Welch; Christian Seifert;

Identification of Malicious Web Pages with Static Heuristics

Abstract

Malicious web pages that launch client-side attacks on web browsers have become an increasing problem in recent years. High-interaction client honeypots are security devices that can detect these malicious web pages on a network. However, high-interaction client honeypots are both resource-intensive and known to miss attacks. This paper presents a novel classification method for detecting malicious web pages that involves inspecting the underlying static attributes of the initial HTTP response and HTML code. Because malicious web pages import exploits from remote resources and hide exploit code, static attributes characterizing these actions can be used to identify a majority of malicious web pages. Combining high-interaction client honeypots and this new classification method into a hybrid system leads to significant performance improvements.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?