
We discuss efficient quantum logic circuits which perform two tasks: (i) implementing generic quantum computations and (ii) initializing quantum registers. In contrast to conventional computing, the latter task is nontrivial because the state-space of an n-qubit register is not finite and contains exponential superpositions of classical bit strings. Our proposed circuits are asymptotically optimal for respective tasks and improve published results by at least a factor of two. The circuits for generic quantum computation constructed by our algorithms are the most efficient known today in terms of the number of expensive gates (quantum controlled-NOTs). They are based on an analogue of the Shannon decomposition of Boolean functions and a new circuit block, quantum multiplexor, that generalizes several known constructions. A theoretical lower bound implies that our circuits cannot be improved by more than a factor of two. We additionally show how to accommodate the severe architectural limitation of using only nearest-neighbor gates that is representative of current implementation technologies. This increases the number of gates by almost an order of magnitude, but preserves the asymptotic optimality of gate counts.
18 pages; v5 fixes minor bugs; v4 is a complete rewrite of v3, with 6x more content, a theory of quantum multiplexors and Quantum Shannon Decomposition. A key result on generic circuit synthesis has been improved to ~23/48*4^n CNOTs for n qubits
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 491 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
