Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www-2.cs.cmu....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/asap.2...
Article . 2004 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.1184/r1/...
Other literature type . 2003
Data sources: Datacite
https://dx.doi.org/10.1184/r1/...
Other literature type . 2003
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reconfigurable computing and electronic nanotechnology

Authors: M. Mishra; Seth Copen Goldstein; Mihai Budiu; Girish Venkataramani;

Reconfigurable computing and electronic nanotechnology

Abstract

We examine the opportunities brought about by recent progress in electronic nanotechnology and describe the methods needed to harness them for building a new computer architecture. In this process we decompose some traditional abstractions, such as the transistor, into fine-grain pieces, such as signal restoration and input-output isolation. We also show how we can forgo the extreme reliability of CMOS circuits for low-cost chemical self-assembly at the expense of large manufacturing defect densities. We discuss advanced testing methods that can be used to recover perfect functionality from unreliable parts. We proceed to show how the molecular switch, the regularity of the circuits created by self-assembly and the high defect densities logically require the use of reconfigurable hardware as a basic building block for hardware design. We then capitalize on the convergence of compilation and hardware synthesis (which takes place when programming reconfigurable hardware) to propose the complete elimination of the instruction-set architecture from the system architecture, and the synthesis of asynchronous dataflow machines directly from high-level programming languages, such as C. We discuss in some detail a scalable compilation system that performs this task.

Related Organizations
Keywords

FOS: Computer and information sciences, 89999 Information and Computing Sciences not elsewhere classified

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%