
Software implementations of cryptographic algorithms are slow but highly flexible and relatively easy to implement. On the other hand, hardware implementations are usually faster but provide little flexibility and require a lot of time to implement efficiently. In this paper, we develop a hybrid software-hardware implementation of the third round of Supersingular Isogeny Key Encapsulation (SIKE), a post-quantum cryptography algorithm candidate for NIST. We implement an isogeny field accelerator for the hardware and integrate it with a RISC-V processor which also acts as the main control unit for the field accelerator. The main advantage of this design is the high performance gain from the hardware implementation and the flexibility and fast development the software implementation provides. This is the first hybrid RISC-V and accelerator of SIKE. Furthermore, we provide one implementation for all NIST security levels of SIKE. Our design has the best area-time at NIST security levels 3 and 5 out of all hardware and hybrid designs provided in the literature.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
