
Hyperspectral sparse unmixing is a task to estimate the optimal fraction (abundance) of materials contained in mixed pixels (endmembers) of a hyperspectral scene, by considering the abundance sparsity. The abundance has a unique property, i.e., high spatial correlation in local regions. This is due to the fact that the endmembers existing in the region are highly correlated. It implies the low rankness of the abundance in the term of endmember. Coming from this prior knowledge, it is expected that considering the low-rank local abundance to the sparse unmixing problem improves the estimation performance. In this paper, we exploit the low-rank local abundance by applying the weighted nuclear norm to the abundance matrix for spatially and spectrally local regions, and add it to the conventional method. We conduct experiments assuming either pure pixels exist on the data or not. The experiment shows that our method yields competitive results and improves the conventional method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
