
In order to avoid collapse of wells in oil fields, the use of steel casing has been a common technique throughout the last decades. However, the casing of a well with a steel pipe has some undesired effects. For instance, the assessment of electrical properties of the rock formation becomes more challenging, since the casing highly attenuates the electromagnetic fields. All these difficulties may be overcome by utilizing a novel numerical method based on a self-adaptive, goal-oriented hp-finite element method (FEM) that converges exponentially in terms of the quantity of interest vs. the problem size (as well as CPU time). The method is based on a purely numerical, highly accurate, and very reliable adaptive algorithm, which has been successfully applied to a variety of resistivity logging devices, including TCRT, induction, and normal/laterolog instruments. This methodology provides a guaranteed numerical error threshold below 0.1%, which allows for accurate simulation of meaningful physical effects in cased wells, such as invasion of water and/or anisotropy
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
