Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Conference object . 2012
Data sources: PolyPublie
https://doi.org/10.1109/allert...
Article . 2012 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 6 versions
addClaim

Differentially private Kalman filtering

Authors: Jerome Le Ny; George J. Pappas;

Differentially private Kalman filtering

Abstract

This paper studies the H2 (Kalman) filtering problem in the situation where a signal estimate must be constructed based on inputs from individual participants, whose data must remain private. This problem arises in emerging applications such as smart grids or intelligent transportation systems, where users continuously send data to third-party aggregators performing global monitoring or control tasks, and require guarantees that this data cannot be used to infer additional personal information. To provide strong formal privacy guarantees against adversaries with arbitrary side information, we rely on the notion of differential privacy introduced relatively recently in the database literature. This notion is extended to dynamic systems with many participants contributing independent input signals, and mechanisms are then proposed to solve the H2 filtering problem with a differential privacy constraint. A method for mitigating the impact of the privacy-inducing mechanism on the estimation performance is described, which relies on controlling the Hinfinity norm of the filter. Finally, we discuss an application to a privacy-preserving traffic monitoring system.

9 pages. arXiv admin note: substantial text overlap with arXiv:1207.4305

Country
Canada
Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Green