
We describe a reinforcement learning based scheme to estimate the stationary distribution of subsets of states of large Markov chains. dasiaSplit samplingpsila ensures that the algorithm needs to just encode the state transitions and will not need to know any other property of the Markov chain. (An earlier scheme required knowledge of the column sums of the transition probability matrix.) This algorithm is applied to analyze the stationary distribution of the states of a node in an 802.11 network.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
