
This paper reviews recent developments extending sampling based motion planning algorithms to operate in dynamic environments. Sampling based planners provide an effective approach for solving high degree of freedom robot motion planning problems. The two most common algorithms are the Probabilistic Roadmap Method and Rapidly Exploring Random Trees. These standard techniques are well established, however they assume a fully known environment and generate paths ahead of time. For realistic applications a robot may be required to update its path in real-time as information is gained or obstacles change position. Variants of these standard algorithms designed for dynamic environments are categorically presented and common implementation strategies are explored.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
