Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

VRU-YOLO: A Small Object Detection Algorithm for Vulnerable Road Users in Complex Scenes

Authors: Yunxiang Liu; Yuqing Shi;

VRU-YOLO: A Small Object Detection Algorithm for Vulnerable Road Users in Complex Scenes

Abstract

Accurate detection of vulnerable road users (VRUs) is critical for enhancing traffic safety and advancing autonomous driving systems. However, due to their small size and unpredictable movements, existing detection methods struggle to provide stable and accurate results under real-time conditions. To overcome these challenges, this paper proposes an improved VRU detection algorithm based on YOLOv8, named VRU-YOLO. First, we redesign the neck structure and construct a Detail Enhancement Feature Pyramid Network (DEFPN) to enhance the extraction and fusion capabilities of small target features. Second, the YOLOv8 network’s Spatial Pyramid Pooling Fast (SPPF) module is replaced with a novel Feature Pyramid Convolution Fast (FPCF) module based on dilated convolution, effectively mitigating feature loss in small target processing. Additionally, a lightweight Optimized Shared Detection Head (OSDH-Head) is introduced, reducing computational complexity while improving detection efficiency. Finally, to alleviate the deficiencies of traditional loss functions in shape matching and computational efficiency, we propose the Wise-Powerful Intersection over Union (WPIoU) loss function, which further optimizes the regression of target bounding boxes. Experimental results on a custom-built multi-source VRU dataset show that the proposed model enhances precision, recall, mAP50, and mAP50:95 by 1.3%, 3.4%, 3.3%, and 1.8%, respectively, in comparison to the baseline model. Moreover, in a generalization test conducted on the remote sensing small target dataset VisDrone2019, the VRU-YOLO model achieved an mAP50 of 31%. This study demonstrates that the improved model offers more efficient performance in small object detection scenarios, making it well-suited for VRU detection in complex road environments.

Related Organizations
Keywords

shared convolution, small object detection, YOLOv8, feature fusion, Electrical engineering. Electronics. Nuclear engineering, Vulnerable road users, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities