<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper proposes miniaturized, lightweight and ultrasensitive planar metamaterial sensor for relative permittivity measurement of nondispersive materials. The proposed sensor is designed using a thin-substrate microstrip line loaded with tapered sectorial Complementary Split Ring Resonator (CSRR). Compared to similar state-of-the-art sensors, the proposed one is at least (25)% more sensitive with a wide dynamic range of the sensing related frequency. Moreover, unlike previously proposed sensors, the relative permittivity of a dielectric sample can be estimated using the variation of the minimum transmission frequency as well as the variation of the 10-dB sensor’s bandwidth which increases the integrity and accuracy of the obtained results. The minimum transmission frequency of the proposed sensor shifts by almost 7.6 GHz with a percentage change of 61% when the relative permittivity of the material under test (MUT) changes from 1 to 10. In addition, the 10-dB bandwidth is reduced by almost 7.7 GHz for the same MUT relative permittivity changes. Experimental measurements are in good agreement with the numerical findings. The paper includes a comprehensive sensitivity analysis that investigates the effect of resonator’s split length as well as its path width on the sensitivity and dynamic range of CSRR based sensors. Finally, the proposed sensor was used for microfluidic sensing to further demonstrate its practicality using different samples with different electrical properties. The sensor was able to provide distinct features for three different eye drops. The proposed sensor can be utilized as an effective permittivity sensor for various sensing applications such as displacement, nondestructive and biomedical sensing.
Permittivity measurement, dielectric measurement, split ring resonator, planar metamaterials, Electrical engineering. Electronics. Nuclear engineering, sensors, metasurfaces, TK1-9971
Permittivity measurement, dielectric measurement, split ring resonator, planar metamaterials, Electrical engineering. Electronics. Nuclear engineering, sensors, metasurfaces, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |