Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2024
License: CC BY
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutation-Based White Box Testing of Deep Neural Networks

Authors: Gökhan Çetiner; Uğur Yayan; Ahmet Yazici;

Mutation-Based White Box Testing of Deep Neural Networks

Abstract

Deep Neural Networks (DNNs) are used in many critical areas, such as autonomous vehicles, generative AI systems, etc. Therefore, testing DNNs is vital, especially for models used in critical areas. Mutation-based testing is a very successful technique for testing DNNs by mutating their complex structures. Deep Mutation Module was developed to address mutation-based testing and the robustness challenges of DNNs. It analyses the structures of DNNs in detail. It tests models by applying mutation to parameters and structures using its fault library. Testing DNN structures and detecting faults is a highly complex and open-ended challenge. The method proposed in this study applies mutations to DNN parameters to expose faults and weaknesses in the models, thereby testing their robustness. The paper focuses on mutation-based tests of an Reinforce Learning (RL) model developed for electric vehicle routing, a Long Short-Term Memory (LSTM) model developed for prognostic predictions, and a Transformer-based neural network model for electric vehicle routing tasks. The best mutation scores for the LSTM model were measured as 96%, 91.02%, 71.19%, and 68.77%. The test results for the RL model resulted in mutation scores of 93.20%, 72.13%, 77.47%, 79.28%, and 55.74%. The mutation scores of the Transformer model were 75.87%, 76.36%, and 74.93%. These results show that the module can successfully test the targeted models and generate mutants classified as “survived mutants” that outperform the original models. In this way, it provides critical information to researchers to improve the overall performance of the models. Conducting these tests before using them in real-world applications minimizes faults and maximizes model success.

Related Organizations
Keywords

reinforcement learning, machine learning, deep neural networks, Convolutional neural network, mutation-based testing, Electrical engineering. Electronics. Nuclear engineering, long short-term memory, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold