
pmc: PMC10705813 , PMC10441341
ABSTRACTMany physical processes display complex high-dimensional time-varying behavior, from global weather patterns to brain activity. An outstanding challenge is to express high dimensional data in terms of a dynamical model that reveals their spatiotemporal structure. Dynamic Mode Decomposition is a means to achieve this goal, allowing the identification of key spatiotemporal modes through the diagonalization of a finite dimensional approximation of the Koopman operator. However, DMD methods apply best to time-translationally invariant or stationary data, while in many typical cases, dynamics vary across time and conditions. To capture this temporal evolution, we developed a method, Non-Stationary Dynamic Mode Decomposition (NS-DMD), that generalizes DMD by fitting global modulations of drifting spatiotemporal modes. This method accurately predicts the temporal evolution of modes in simulations and recovers previously known results from simpler methods. To demonstrate its properties, the method is applied to multi-channel recordings from an awake behaving non-human primate performing a cognitive task.
Dynamic mode decomposition, data-driven modeling, non-stationary methods, Electrical engineering. Electronics. Nuclear engineering, multi-variate time-series, Article, computational neuroscience, TK1-9971
Dynamic mode decomposition, data-driven modeling, non-stationary methods, Electrical engineering. Electronics. Nuclear engineering, multi-variate time-series, Article, computational neuroscience, TK1-9971
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
