
Estimating frame-to-frame (F2F) visual odometry with monocular images has significant problems of propagated accumulated drift. We propose a learning-based approach for F2F monocular visual odometry estimation with novel and simple methods that consider the coherence of camera trajectories without any post-processing. The proposed network consists of two stages: initial estimation and error relaxation. In the first stage, the network learns disparity images to extract features and predicts relative camera pose between adjacent two frames through the attention, rotation, and translation networks. Then, loss functions are proposed in the error relaxation stage to reduce the local drift, increasing consistency under dynamic driving scenes. Moreover, our skip-ordering scheme shows the effectiveness of dealing with sequential data. Experiments with the KITTI benchmark dataset show that our proposed network outperforms other approaches with higher and more stable performance.
camera trajectory, visual odometry, camera pose, Electrical engineering. Electronics. Nuclear engineering, Deep neural network, odometry drift, TK1-9971
camera trajectory, visual odometry, camera pose, Electrical engineering. Electronics. Nuclear engineering, Deep neural network, odometry drift, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
