Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Swarm Modeling With Dynamic Mode Decomposition

Authors: Emma Hansen; Steven L. Brunton; Zhuoyuan Song;

Swarm Modeling With Dynamic Mode Decomposition

Abstract

Modelling biological or engineering swarms is challenging due to the inherently high dimension of the system, despite the often low-dimensional emergent dynamics. Most existing swarm modelling approaches are based on first principles and often result in swarm-specific parameterizations that do not generalize to a broad range of applications. In this work, we apply a purely data-driven method to (1) learn local interactions of homogeneous swarms through observation data and to (2) generate similar swarming behaviour using the learned model. In particular, a modified version of dynamic mode decomposition with control, called swarmDMD, is developed and tested on the canonical Vicsek swarm model. The goal is to use swarmDMD to learn inter-agent interactions that give rise to the observed swarm behaviour. We show that swarmDMD can faithfully reconstruct the swarm dynamics, and the model learned by swarmDMD provides a short prediction window for data extrapolation with a trade-off between prediction accuracy and prediction horizon. We also provide a comprehensive analysis on the efficacy of different observation data types on the modelling, where we find that inter-agent distance yields the most accurate models. We believe the proposed swarmDMD approach will be useful for studying multi-agent systems found in biology, physics, and engineering.

15 pages, 18 figures

Keywords

FOS: Computer and information sciences, optimisation, FOS: Physical sciences, Dynamical Systems (math.DS), Swarms, Computer Science - Robotics, FOS: Mathematics, dynamic mode decomposition, multi-agent systems, Physics - Biological Physics, Neural and Evolutionary Computing (cs.NE), Mathematics - Dynamical Systems, reduced-order models, Computer Science - Neural and Evolutionary Computing, Nonlinear Sciences - Adaptation and Self-Organizing Systems, TK1-9971, 37M99, 92D50, 70E55, 37M05, 37M10, Biological Physics (physics.bio-ph), Electrical engineering. Electronics. Nuclear engineering, control, Robotics (cs.RO), Adaptation and Self-Organizing Systems (nlin.AO)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold