
Dans un environnement avec de multiples obstacles statiques, les UAV communiquent généralement entre eux pour éviter les collisions lors de la planification de trajectoire. Cependant, une telle communication peut devenir irréalisable ou peu fiable en raison d'interférences ou de bourrages dans la pratique. Cet article introduit un algorithme de prédiction de trajectoire des voisins basé sur la commande prédictive de modèle (MPC), qui permet à chaque UAV de prédire le comportement de mouvement de ses voisins sans communication. En résolvant le modèle MPC de ses voisins, un UAV peut prédire leurs trajectoires et éviter les collisions avec eux à l'avenir. Pour prouver la faisabilité, nous intégrons l'algorithme proposé dans le cadre de la commande prédictive de modèle distribué (DMPC) pour réaliser la planification de trajectoire multi-UAV sans communication et avec des obstacles statiques. La performance de notre méthode est vérifiée par des expériences de simulation en deux scènes.
En un entorno con múltiples obstáculos estáticos, los UAV generalmente se comunican entre sí para evitar colisiones durante la planificación de la trayectoria. Sin embargo, dicha comunicación puede volverse inviable o poco confiable debido a interferencias o atascos en la práctica. Este documento introduce un algoritmo de predicción de trayectoria de vecinos basado en el control predictivo del modelo (MPC), que permite a cada UAV predecir el comportamiento de movimiento de sus vecinos sin comunicación. Al resolver el modelo MPC de sus vecinos, un UAV puede predecir sus trayectorias y luego evitar la colisión con ellos en el futuro. Para demostrar la viabilidad, integramos el algoritmo propuesto en el marco de control predictivo del modelo distribuido (DMPC) para realizar una planificación de trayectoria multi-UAV sin comunicación y con obstáculos estáticos. El rendimiento de nuestro método se verifica mediante experimentos de simulación en dos escenas.
In an environment with multiple static obstacles, UAVs usually communicate with each other to avoid collisions during trajectory planning.However, such communication may become infeasible or unreliable due to interference or jam in practice.This paper introduces a neighbors trajectory prediction algorithm based on model predictive control (MPC), which enables each UAV to predict the motion behavior of its neighbors without communication.By solving the MPC model of its neighbors, an UAV can predict their trajectories and then avoid collision with them in the future.To prove the practicability, we integrate the proposed algorithm into distributed model predictive control (DMPC) framework to realize multi-UAV trajectory planning without communication and with static obstacles.The performance of our method is verified by simulation experiments in two scenes.
في بيئة بها عقبات ثابتة متعددة، عادة ما تتواصل الطائرات بدون طيار مع بعضها البعض لتجنب الاصطدامات أثناء تخطيط المسار. ومع ذلك، قد يصبح هذا الاتصال غير عملي أو غير موثوق به بسبب التداخل أو الازدحام في الممارسة العملية. تقدم هذه الورقة خوارزمية التنبؤ بمسار الجيران بناءً على نموذج التحكم التنبئي (MPC)، والتي تمكن كل طائرة بدون طيار من التنبؤ بسلوك الحركة لجيرانها دون اتصال. من خلال حل نموذج MPC لجيرانها، يمكن للطائرة بدون طيار التنبؤ بمساراتها ثم تجنب الاصطدام بها في المستقبل. لإثبات قابلية التطبيق العملي، ندمج الخوارزمية المقترحة في إطار التحكم التنبئي للنموذج الموزع (DMPC) لتحقيق تخطيط مسار متعدد الطائرات بدون طيار دون اتصال ومع عقبات ثابتة. يتم التحقق من أداء طريقتنا من خلال تجارب المحاكاة في مشهدين.
Artificial intelligence, model predictive control, Computer Networks and Communications, Path Planning, Robot, Astronomy, Trajectory, FOS: Mechanical engineering, Sampling-Based Motion Planning Algorithms, Probabilistic Roadmaps, Trajectory Prediction, Engineering, Distributed Multi-Agent Coordination and Control, Real-Time Planning, Motion (physics), Physics, Collision avoidance, Computer science, TK1-9971, Optimal Motion Planning, neighbors trajectory prediction, Computer Science, Physical Sciences, Automotive Engineering, path planning for multiple mobile robots or agents, Motion planning, Computer vision, Electrical engineering. Electronics. Nuclear engineering, Computer Vision and Pattern Recognition, Autonomous Vehicle Technology and Safety Systems
Artificial intelligence, model predictive control, Computer Networks and Communications, Path Planning, Robot, Astronomy, Trajectory, FOS: Mechanical engineering, Sampling-Based Motion Planning Algorithms, Probabilistic Roadmaps, Trajectory Prediction, Engineering, Distributed Multi-Agent Coordination and Control, Real-Time Planning, Motion (physics), Physics, Collision avoidance, Computer science, TK1-9971, Optimal Motion Planning, neighbors trajectory prediction, Computer Science, Physical Sciences, Automotive Engineering, path planning for multiple mobile robots or agents, Motion planning, Computer vision, Electrical engineering. Electronics. Nuclear engineering, Computer Vision and Pattern Recognition, Autonomous Vehicle Technology and Safety Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
