Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shock Decision Algorithms for Automated External Defibrillators Based on Convolutional Networks

Authors: Xabier Jaureguibeitia; Gorka Zubia; Unai Irusta; Elisabete Aramendi; Beatriz Chicote; Daniel Alonso; Andima Larrea; +1 Authors

Shock Decision Algorithms for Automated External Defibrillators Based on Convolutional Networks

Abstract

Automated External Defibrillators (AED) incorporate a shock decision algorithm that analyzes the patient's electrocardiogram (EKG), allowing lay persons to provide life saving defibrillation therapy to out-of-hospital cardiac arrest (OHCA) patients. The most accurate shock decision algorithms are based on deep learning, but these algorithms have not been trained and tested using OHCA data. In this study we propose novel deep learning architectures for shock decision algorithms based on convolutional and residual networks. EKG electronic recordings from a cohort of 852 OHCA cases (4216 AED EKG analyses) were used in the study. EKGs were annotated by a pool of six expert clinicians resulting in 3718 nonshockable and 498 shockable EKGs. Data were partitioned patient wise in a stratified way to train and test the models using 10-fold cross validation, and the procedure was repeated 100 times for statistical evaluation. Performance was assessed using sensitivity (shockable), specificity (non-shockable) and accuracy, and the analysis was conducted for EKG segments of decreasing duration. The best model had median (interdecile range) accuracies of 98.6 (98.5-98.7)%, 98.4 (98.2-98.6)%, 98.2 (97.9-98.4)%, and 97.6 (97.4-97.8)%, for 4, 3, 2 and 1 second EKG segments, respectively. The minimum 90% sensitivity and 95% specificity requirements established by the American Heart Association for shock decision algorithms were met, and the best model presented significantly greater accuracy (p<; 0.05 McNemar test) than previous deep learning solutions for all segment durations. Moreover, the first AHA compliant shock decision algorithm using 1-s segments was demonstrated. This should contribute to a combined optimization of defibrillation and cardiopulmonary resuscitation therapy to improve OHCA survival.

Keywords

convolutional neural networks (CNN), residual networks, electrocardiogram (EKG), Automated external defibrillator (AED), deep learning, Electrical engineering. Electronics. Nuclear engineering, ventricular fibrillation (VF), TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold