
In this paper, we propose a novel Adaptive Modulation and Coding (AMC) scheme enabled by Artificial Neural Network (ANN) aided Signal-to-Noise power Ratio (SNR) estimation. The Power Spectral Density (PSD) values are trained for SNR classification and it is mapped to respective Modulation and Coding Scheme (MCS) sets. Once trained, optimal MCS can be determined in low calculation complexity. The proposed approach is robust especially in high mobility environment since the PSD appearance is hardly influenced by the Doppler shift. Its effectiveness in terms of throughput is presented through computer simulations compared to the existing Error Vector Magnitude (EVM) based link adaptation scheme.
SNR estimation, adaptive modulation and coding, Electrical engineering. Electronics. Nuclear engineering, artificial neural network, TK1-9971
SNR estimation, adaptive modulation and coding, Electrical engineering. Electronics. Nuclear engineering, artificial neural network, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
