
This paper considers continuously differentiable functions of two vector variables that have (possibly a continuum of) min-max saddle points. We study the asymptotic convergence properties of the associated saddle-point dynamics (gradient-descent in the first variable and gradient-ascent in the second one). We identify a suite of complementary conditions under which the set of saddle points is asymptotically stable under the saddle-point dynamics. Our first set of results is based on the convexity-concavity of the function defining the saddle-point dynamics to establish the convergence guarantees. For functions that do not enjoy this feature, our second set of results relies on properties of the linearization of the dynamics and the function along the proximal normals to the saddle set. We also provide global versions of the asymptotic convergence results. Various examples illustrate our discussion.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
