
arXiv: 1010.2186
This paper studies the opinion dynamics model recently introduced by Hegselmann and Krause: each agent in a group maintains a real number describing its opinion; and each agent updates its opinion by averaging all other opinions that are within some given confidence range. The confidence ranges are distinct for each agent. This heterogeneity and state-dependent topology leads to poorly-understood complex dynamic behavior. We classify the agents via their interconnection topology and, accordingly, compute the equilibria of the system. We conjecture that any trajectory of this model eventually converges to a steady state under fixed topology. To establish this conjecture, we derive two novel sufficient conditions: both conditions guarantee convergence and constant topology for infinite time, while one condition also guarantees monotonicity of the convergence. In the evolution under fixed topology for infinite time, we define leader groups that determine the followers' rate and direction of convergence.
6 pages, ACC 2011
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Mathematical Physics (math-ph), Physics and Society (physics.soc-ph), Mathematical Physics
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Mathematical Physics (math-ph), Physics and Society (physics.soc-ph), Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
