
doi: 10.1109/97.668945
Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership specification, as opposed to a bounded noise assumption. This sets the framework for several important filtering problems that are not modeled by a "true" unknown system with bounded noise, such as adaptive equalization, to exploit the unique advantages of SMI algorithms. A recursive solution for set membership filtering is derived that resembles a variable step size normalized least mean squares (NLMS) algorithm. Interesting properties of the algorithm, such as asymptotic cessation of updates and monotonically non-increasing parameter error, are established. Simulations show significant performance improvement in varied environments with a greatly reduced number of updates.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 257 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
