<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1109/84.896771
Electrochemically formed porous silicon (PS) can be released from the bulk silicon substrate by underetching at increased current density. Using this technique, two types of channels containing free-standing layers of PS were constructed, which were called multi-walled microchannels (MW μCs). They can be used in devices like microsieves, microbatteries, and porous electrodes. Two types of MWμC were made: the 'conventional' version, consisting of two or more coaxially constructed microchannels separated by a suspended PS membrane, and the buried variety, where a PS membrane is suspended halfway an etched cavity surrounded by silicon nitride walls. The latter is more robust. The pore size of the PS was measured using transmission electron microscopy and field emission gun scanning electron microscopy (FEGSEM) and found to be of the order of 7 nm.
Electrochemical etching, Porous silicon, Pore size, Silicon micromachining, Microsieve
Electrochemical etching, Porous silicon, Pore size, Silicon micromachining, Microsieve
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |